If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10p^2=980
We move all terms to the left:
10p^2-(980)=0
a = 10; b = 0; c = -980;
Δ = b2-4ac
Δ = 02-4·10·(-980)
Δ = 39200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39200}=\sqrt{19600*2}=\sqrt{19600}*\sqrt{2}=140\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140\sqrt{2}}{2*10}=\frac{0-140\sqrt{2}}{20} =-\frac{140\sqrt{2}}{20} =-7\sqrt{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140\sqrt{2}}{2*10}=\frac{0+140\sqrt{2}}{20} =\frac{140\sqrt{2}}{20} =7\sqrt{2} $
| (4/5)=x-2 | | -3x+7=7(1+7x) | | 3x-(5x-1)=15 | | 4(x+2)=-7+3x | | -4+2(3x+1)=2(2x-3)+6 | | 170+10x-6x=102+10x | | 6x^2+9x-18=-3 | | X+1(x)=2x | | 6+3x=92 | | 7x+15=5x+1 | | 100+25(x-2)=50+20(x-2) | | 2x-4/6=3x-1/5 | | −4=6−7+h= | | 1/5(20+x)=10 | | -2s-17=5s+18 | | 6-3x=92 | | a^2-8a+10a=3-5a | | 16j+5j-16j=5 | | h−4=6(7+h | | 8n^2+2n=0 | | 2n+21=57 | | 4=75-x | | 2b+4=-18=9b | | -13+10r+17=12r+18 | | 3/5.79=13/x | | 8+2/3(x)=6 | | 7x+28=10x-32 | | 11x+6-3=10x3 | | -7(1+3p)=18+4p | | -6p-3-7p=-3+4p | | 13x^2-3x-304=0 | | -6d-1=-7d-8 |